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Although the FAA has sponsored this project, it neither endorses nor rejects the findings of this research.  The presentation of 
this information is in the interest of invoking technical community comment on the results and the conclusions of the research.
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Executive Summary

• Motivation and Objectives

• Concept of Operations

• Rotorcraft Mission Segments

• Data Analysis for Safety

– Flight Simulation for Vortex Ring State  Training 

– Dynamic Rollover Study

• Conclusions and Future Work

• Publications and Accomplishments
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Flight Data Monitoring

• Flight data collection and proactive risk 
mitigation analysis of ordinary flight operations 
is known as Flight Data Monitoring (FDM) 

• FDM programs are one of the most widespread 
safety programs for rotorcraft safety 

• An FDM program consists of:

‒ Collecting flight data
‒ Developing safety analysis tools/techniques
‒ Enabling risk mitigation efforts

• The power of FDM is shown via safety metrics 
which detect hazardous flight conditions

• Safety metrics help pinpoint anomalies and 
deviations from standard operating procedures 
before they become incidents or accidents
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ASIAS = Continuous 
Improvement in Aviation Safety

Aviation Safety 
Information 
Analysis and 

Sharing  (ASIAS)

A collaborative 
government and 
industry initiative 

on data sharing and 
analysis to 
proactively 

discover safety 
concerns before 

accidents or 
incidents occur, 

leading to timely 
mitigation and 

prevention
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What is Aviation Safety Information 
Analysis and Sharing (ASIAS)?
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Rotorcraft Aviation Safety Information 
Analysis and Sharing (ASIAS)
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Rotorcraft Mission Segments in ASIAS
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HFDM Research for ASIAS

Goal: Support the USHST efforts to reduce the helicopter fatal 
accident rate and thus improve rotorcraft flight safety by 
developing new analytical tools designed for the unique nature of 
helicopter operations
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Means: Create integrated and secure rotorcraft flight data 
repository and safety analysis capability for broad use by 
rotorcraft operators to support creation of helicopter flight data 
analysis within ASIAS 
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DEVELOPMENT OF SAFETY METRICS FOR 
ROTORCRAFT OPERATIONS
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FLIGHT SIMULATION FOR VORTEX RING STATE  
TRAINING
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Vortex Ring State (VRS) – 
Overview of the Phenomenon 
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mvheli.com

flight-study.com

VRS inducing characteristics:
• Low or zero true airspeed
• Collective input creating induced flow
• Sufficient Rate of Descent, depending on the Helicopter disk 

loading

Symptoms of VRS encounter:
• Increasing rate of descent 
• Random uncontrolled pitch, roll, and yaw
• Aircraft vibrations and stick shake
• Less control authority
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Overview

13

VRS Accident-Prevention Training:

• Create a proof of concept for 
scenario-based training in flight 

simulators dedicated to Vortex Ring 
State (VRS) training

• Develop a framework to evaluate 
pilots' performance in VRS 

recoveries to enhance the simulator 
flight training experience of both 

pilots and instructors 

VRS Onset Evaluation:

Develop and apply a method to assess the fidelity of flight 
simulators for VRS onset

VRS Recovery Evaluation:

Develop and apply a method to assess the fidelity of flight 
simulators for VRS recovery techniques

Flight Simulator Fidelity Assessment for VRS training Application

There are currently no objective, quantifiable requirements 
for Helicopter Flight Simulator's performance and accuracy in 
VRS entry and recovery in the FAA and EASA qualification 
standards.
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Overview of previous work: Scenario-Based 
Training
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• Instructor not physically next to the student in the cockpit

→ cannot directly monitor the student’s actions on the controls → May not identify incorrect 

recovery technique

→ Need method to provide instructors and students quantitative feedback on performance

Conclusions of Last Year’s Work

• Created and tested a proof of concept for scenario-based 
training in flight simulator dedicated to VRS-related accident 
prevention

• VRS Recovery Techniques:
• Traditional Recovery: 

• Intuitive reaction of the pilots during the recovery 
contradicted description of the technique

• Vuichard Recovery:
• Half of the pilots had training in the recovery but only 

two attempted to use it and performed it incorrectly
• Lack of proficiency and training made it unusable

Virtual Reality Simulator Limitation
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Overview of Experiment
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Recovery Aspects:

Effectiveness

Develop a metric independent of the starting 
airspeed, vertical speed, and weight

Correct Application

Develop a set of criteria to determine whether 
the recovery is performed as defined

Consistency

Determine the rate of correct application and 
the spread in efficiency

Objective: Develop a framework to evaluate pilots' performance in VRS recoveries to 
enhance the simulator flight training experience of both pilots and instructors. 

H125 VR Flight Simulator

• 11 Pilots: All trained in the Traditional Recovery, Half 
trained in the Vuichard Recovery, None trained in the 
Power-Assisted Recovery

•                                             624 Recoveries Recorded

• 217 Traditional Recoveries

• 220 Power-Assisted Recoveries

• 187 Vuichard Recoveries (incl. 15 from Capt. Vuichard)

Pilots

Recoveries
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Power-Assisted Recovery : Correct Application- 
Distributions
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Introduction

Experimental 

Design

Results: H125 
Sim.

Results: R22 Sim. 
– R66 Helo.

Conclusions
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Power-Assisted Recovery : Correct Application
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Collective Input

• If Initial Torque < 90%: (Normal Initial Torque Situation)

• No overtorque (Maximum torque <=100%)

• Maintain/Increase torque during the recovery (Maximum torque>= Initial Torque)

• Maintain/Increase torque at the beginning of the recovery (between the start of the 
recovery and the maximum torque time, the torque does not go below the initial torque -
5 % pts)

• Else: (High Initial Torque Situation)

• Avoid excessive overtorque (Maximum torque<= Initial torque + 15 % pts)

Correct Application Criteria:

Longitudinal Cyclic Input

• Decisive downward Pitch motion: 

• Maximum pitch down between 10 and 35 degrees

• Average absolute pitch down rate to max pitch down faster than 2 deg/sec

Lateral Cyclic and Pedal Inputs

• Maintain directional control:

• Bank -20 to 20 deg

• Heading deviation smaller than 30 deg

Introduction

Experimental 

Design

Results: H125 
Sim.

Results: R22 Sim. 
– R66 Helo.

Conclusions
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Power-Assisted Recovery: Correct Application - 
Dataset
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Introduction

Experimental 

Design

Results: H125 
Sim.

Results: R22 Sim. 
– R66 Helo.

Conclusions
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Power-Assisted Recovery : Correct Application
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Pilot
Nb

Recs
Nb 

Correct
% Correct

% Correct 
Collective

% 
Overtorq

ue

% Correct 
Collective 

motion

% Correct 
Longcyc

% Correct 
Pitch

% Correct 
Pitch 
Rate

% Low 
Pitch 
down

% Correct 
Latcyc

% Correct 
Pedals

PilotB 4 1 25 100 0 100 25 100 25 0 100 100

PilotC 32 26 81 96 3 100 84 90 93 9 100 100

PilotD 12 5 41 83 16 91 58 75 58 25 91 83

PilotE 14 6 42 92 7 100 92 100 92 0 100 50

PilotF 7 0 0 85 14 100 0 100 0 0 100 71

PilotG 12 11 91 100 0 100 91 91 91 8 100 100

PilotH 12 6 50 66 33 100 75 91 83 8 91 91

PilotJ 91 82 90 97 0 97 94 94 98 3 93 96

PilotK 7 5 71 85 14 100 85 85 100 14 100 100

PilotO 11 4 36 54 45 90 72 81 90 9 81 63

PilotV 18 17 94 100 0 100 94 94 100 0 100 100

all 220 163 74 92 6 98 84 92 89 5 95 91

Introduction

Experimental 

Design

Results: H125 
Sim.

Results: R22 Sim. 
– R66 Helo.

Conclusions

• Same average % overtorque between Power-Assisted and Traditional recovery (6%) -> independent of collective 
motion

• Only 4 pilots performed correctly over 75% of the time (the same 4 as for the traditional recovery)

Observations
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Power-Assisted Recovery
 Multi-linear Regression Model – Altitude Lost
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Summary of Fit

0.74

Adjusted 𝑅2 0.72

RMSE 29.7

Mean of Response 148 ft

Observations 149

Introduction

Experimental 

Design

Results: H125 
Sim.

Results: R22 Sim. 
– R66 Helo.

Conclusions
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• Based on altitude loss

• Altitude loss depends on the recovery’s initial conditions -> Need to non-dimensional 
-> Requires estimating the impact of the initial conditions on the altitude loss

Effectiveness Metric

Parameter Effect Impact of Parameter on Altitude Lost during the Recovery

Weight Increasing weight increases altitude lost

Initial Forward Speed Increasing speed decreases recovery altitude lost

Initial Descent Rate Increasing descent rate increases altitude lost No effect

Collective Input Increasing maximum collective input decreases altitude lost

Longitudinal Cyclic There is a downward pitch value that minimizes the altitude lost
Increase the maximum downward pitch increases the altitude lost

Longitudinal Cyclic 
rate

Increasing the average pitch rate to reach maximum pitch down 
decreases the altitude lost
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Power-Assisted Recovery : Effectiveness & 
Consistency

Effectiveness:

• Nominal altitude loss: predicted 
altitude loss at the given starting 
condition with the most favorable 
control inputs

• 100%: Recover with less (or equal) 
than the nominal altitude loss

• 0%: Recover with more than thrice 
the nominal altitude loss
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• Average altitude loss for pilot D is 
lower than that of pilots C and E, 
however effectiveness of pilot D is 
also lower on average

• Untransformed altitude loss is not a 
fair measurement of effectiveness

Observations

Effectiveness Metric
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Power Assisted Recovery: Consistency
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Pilot
Nb

Recs
Nb Correct

% 
Correct

Med. 
Effectiveness 

(%)
IQR Range

Med. 
Effectiveness 
(%) – Correct 

only

IQR – Correct 
only

Range – 
Correct only

PilotB 4 1 25 0 0 0 0 0 0

PilotC 32 26 81 92 31 100 92 30 100

PilotD 12 5 41 63 23 81 69 11 26

PilotE 14 6 42 78 27 68 69 18 60

PilotF 7 0 0 0 8 33

PilotG 12 11 91 72 40 100 73 44 100

PilotH 12 6 50 64 47 100 71 29 84

PilotJ 91 82 90 95 30 100 95 30 100

PilotK 7 5 71 83 32 43 83 24 43

PilotO 11 4 36 76 84 100 58 50 91

PilotV 18 17 94 100 4 61 100 1 40

all 220 163 74

Introduction

Experimental 

Design

Results: H125 
Sim.

Results: R22 Sim. 
– R66 Helo.

Conclusions

• Very high correlation between the percentage of correct recoveries for a pilot and the median 
effectiveness score, unlike the traditional recoveries

• No correlation between the range of effectiveness scores and the number of recoveries flown 
by the pilots

Observations
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Summary: Pilot Performance Evaluation Results
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Effectiveness

• All techniques: Altitude loss does not 
fairly represent the effectiveness of the 
technique, non-dimensional 

effectiveness score takes into account 
the initial conditions to provide a means 
of comparison between recoveries

Correctness

Most common issue observed for each 
technique:
• Power-Assisted Technique: Longitudinal 

cyclic input (not pitching down fast 
enough)

• Traditional Technique: Collective input 
(not lowering the collective enough)

• Vuichard Technique: Lateral cyclic input 

(not banking fast enough)

Consistency

• Power-Assisted Technique: very strong 
correlation between the percentage of 
correct recoveries and the median 

effectiveness score
• All techniques: no correlation between 

range of effectiveness scores and the 
number of recoveries flown by a pilot

H125 Flight Simulator

R22 Flight Simulator vs R66 Helicopter

Effectiveness

• Could not develop a non-dimensional 
effectiveness score for the R66 due to 
the low number of data points

• Overall, there is a good correlation 
between altitude loss in the helicopter 
and simulator

Correctness

• Applied the correctness criteria defined 
in the previous experiment to a single 
pilot flying in the R22 simulator and R66 

helicopter
• There was a very strong correlation 

between the pilot’s correctness scores in 
the simulator and helicopter for all 
techniques

Consistency

• Overall the recoveries were more 
consistent in the helicopter than in the 
simulator, most likely due to the lower 

rate of descent in the helicopter and 
pilot familiarity with the machine

Observations based on a single pilot → Results must not be generalized
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STUDY OF DYNAMIC ROLLOVER
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Dynamic Rollover – Definition 
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Hover 
33%

Landing
28%

Take Off
39%

Phase of flight of dynamic rollover 
occurrences for 2022/2023

100% 
resulted in substantial 
damage to the aircraft1

50% 
resulted in some injuries1

11% 
resulted in serious injuries1

Helicopter Flying Handbook:
Dynamic rollovers begin when the helicopter 
starts to pivot laterally around its skid or 
wheel.

For dynamic rollover to occur, three factors 
must be present: 

1. A rolling moment 
2. A pivot point other than the normal CG of the 

helicopter 
3. Thrust > weight 

128 dynamic rollovers in the U.S. since 2008 (NTSB data):

Previous work:
• Former student’s work provides a method to augment existing Helicopter Flight Data Monitoring 

(HFDM) systems using physics-based models
• In addition to measured variables, additional metrics are derived for event analysis
• A metric of interest is derived as first hitting time for dynamic rollovers, to detect potential 

hazards

Goal: Extend approach by analyzing a wider range of initial conditions and introducing 
stochastic modeling to derive a risk-based metric for rollover prediction
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Experiments

• Dynamic simulations of the 
uncontrolled helicopter were run 
using the FlightLab simulation 
software

• In each case, the helicopter started 
from an in-flight, near-ground state, 
representing hover, hover taxi, and 
landing scenarios (61% of accidents) 

• A design of experiments was created 
to derive optimal combinations of 
initial parameters 

• 28,000 simulations were run, and the 
first hitting time was recorded for 
each set of parameters

26
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Pearson coefficients: measure linear relationship
Spearman coefficients: measure monotonic relationship

Correlation Coefficients:

• Correlation coefficients between 
the first hitting time and each 
parameter were calculated

• The sign of the coefficients 
indicate the direction of the 
relationship, while the absolute 
value (0 to 1) represent the 
strength of the relationship

• Variables most correlated with 
the first-hitting-time are the 
slope, height, lateral speed, 
lateral cyclic, and collective input

Identifying Significant Parameters

27
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Feature Importance:

• A Random Forest classification 
model was created to predict 
safe/unsafe cases1, based on a 
predefined threshold (2.5s)

• The Feature Importance 
measures the weight of each 
variable to the choice of the 
output (safe or unsafe)

• Most important parameters 
include the collective input, 
slope parameters, initial height, 
cyclic inputs, and horizontal 
speed (about 65% of total 
variability)

1 Here, safe/unsafe only means above/under the first-hitting-time threshold. 
It is not an actual, comprehensive measure of the safety of a situation.

Identifying Significant Parameters

28
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Shap Values:

• Measures whether a variable 
pushes up (shap>0) or down 
(shap<0) the output value 
(first hitting time)

• More spread means more 
variability induced by different 
values of the variable

• Main parameters: slope, Xc, 
Xa, h,  vy

High Xc (red) significantly increase T

T: first-hitting-time
Phi: slope orientation relative to helicopter

Identifying Significant Parameters

29
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Selected 
Parameters

- Slope magnitude and 
orientation
- Collective input Xc
- Lateral cyclic Xa
- Longitudinal cyclic Xb
- Height h
- Horizontal speed Vx,Vy

Log-normal 
distribution

Distribution of potential 
values for first hitting 
time (T) is induced by 
unknown parameters

Probabilistic Neural Network

A probabilistic model of the first-hitting-time was trained to predict the output 
distribution, enabling the identification of boundaries that are robust to variations in 

other variables.

Probabilistic Modeling

30
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Training the Model

• The probabilistic model was trained using Maximum Likelihood Estimation, with 
right censoring due to the limited duration of simulations (10 s):

• The goodness of fit was assessed using the standardized residuals for the predicted 
distribution of log 𝑇, which should follow a standard normal distribution

31

T is first hitting time
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Influence of Parameters

Monte Carlo simulations with the model mean enable the analysis of trends:

32

- Monotonic increase of first hitting time with the initial 
height

- Relatively low impact of the ground slope under 8 deg, 
then linear decrease of first-hitting-time

- Parabolic influence of both lateral and longitudinal 
cyclic inputs on first hitting time, peaking near trimmed 
values

- Collective input has the strongest impact on first 
hitting time

- Ground slope parameters (angle and 
orientation) interact with other variables, 
altering the ranges resulting in high/low 
values of the first hitting time

Example: Evolution of average first hitting time w.r.t. lateral 
cyclic input
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Need for a Probabilistic Metric

The predicted distribution 
shows a high risk of low 
first hitting time, despite 
the average of 4.26s. 
This needs to be accounted 
for when detecting safety 
events using flight data.

The previous analysis only considered the average first hitting time 
for a set of conditions. Is this enough?

33
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Probabilistic Approach

Step 1
Choose a “safe” first 
hitting time threshold Tc

Step 2
Estimate P(T<Tc) in 
various conditions using 
the probabilistic model 

Step 3
Generate 
regression model 
using ANNs

Step 4
Visualize the risk 
P(T<Tc) using 
contour plots

Step 5
Choose a risk 
threshold to visualize 
safe conditions

This process was automated and implemented into a visualization 
environment to easily compare various conditions and their associated risk

Approach followed for the definition of a risk-based metric:

34
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Visualizing the Risk

The final probabilistic metric 
can be visualized using 
contour plots.
Safe conditions can be 
visualized after choosing an 
appropriate risk threshold.

Modifying the conditions 
changes the contours and the 
safe areas. 
For instance, an increased slope 
of 10 degrees shifts the safe 
cyclic input to the right.
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• Dynamic rollovers remain a major safety concern during low-altitude 
helicopter operations 

• This work focused on identifying precursors to dynamic rollover events 
through high-fidelity simulation and data-driven analysis

• Key influencing factors were identified, including control inputs, ground slope, 
and initial flight conditions (speed and height)

• A probabilistic modeling approach was developed to predict the distribution 
of first hitting times, offering a more robust assessment than deterministic 
metrics

• The proposed risk-based framework enables the definition of safe operating 
regions, tailored to operator preferences and visualized through intuitive 
contour plots

• This method provides a foundation for improving helicopter operations and 
HFDM

Conclusion

36
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Dissemination of Project Outcomes – 
Technical Conferences and Meetings
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Dissemination of Project Outcomes – 
Technical Conferences and Meetings
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Dissemination of Project Outcomes – 
Technical Conferences and Meetings
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