

Updates on PEGASAS Project 36: Weather Information Risk and Uncertainty Resolution

Presented by Barrett Caldwell, Purdue University Mike Splitt, Florida Tech

2024 PEGASAS Annual Meeting

Although the FAA has sponsored this project, it neither endorses nor rejects the findings of this research. The presentation of this information is in the interest of invoking technical community comment on the results and the conclusions of the research.

Executive Summary Slide (1 slide)

- Decision Making Studies at WJHTC with Experienced Pilots
- Surprising Findings in Predictions of Risk and Uncertainty based on Information "Availability"
 - How many locations with known conditions are shown
 - Precursor to adding non-authorized ASOS/AWOS sites
- Need Further Unpacking of Pilot Decision Processes
- Role of New Metrics to Address Risk for Low Altitude Operations and Conditions between Reporting Stations
- Expand / Elaborate Past Results with New WJHTC Experiment
- Increasing Roles of Machine Learning for Future
 Development

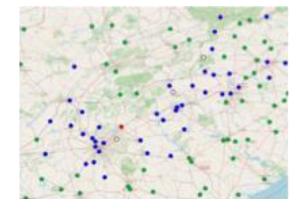
The Team (1 slide)

- Thanks to FAA Project Management Team: Gary Pokodner and Ian Johnson, PhD
- Project 36 PI: Barrett Caldwell, Purdue
 - A. N. "Evv" Boerwinkle here this week
 - C. Barazandeh, L. Davis, C. McCormack
- Florida Tech co-I: Mike Splitt
 - Robbie Breininger, Marcus Cote
 - Other MS and REU undergrad students
- Growing interest from Google and Collins Aerospace

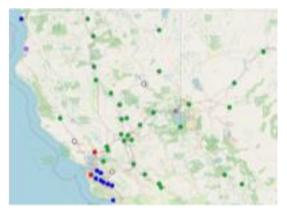
Research Objective 1

- What is the reasoning behind the study design?
 - Increases in pixel resolution of display images have not reduced GA fatalities or accidents
 - Though interface visibility changed, general aviation pilot confidence and understanding of tools not tracking these changes (e.g., Project 4 / 33 studies of NEXRAD delay)
 - Derive solution to address these gaps and trends

Research Objective 1


Category	Ceiling		Visbility
Visual Flight Rules VFR (green sky symbol)	Greater than 3,000 feet AGL	and	Greater than 5 miles
Marginal Visual Flight Rules MVFR (blue sky symbol)	1,000 to 3,000 feet AGL	And/or	3-5 miles
Instrument Flight Rules IFR (red sky symbol)	500 to below 1,000 feet AGL	And/or	1 mile to less than 3 miles
Low Instrument Flight Rules LIFR (magenta sky symbol)	Below 500 feet AGL	And/or	Less than 1 mile

Survey REGIONS (Great Lakes, Cumberland, LA Basin) and INCIDENTS



Forkston, PA: 20210423_0100

Flatrock, NC: 20090910_1815

Crescent Mills, CA: 20180518_1509

Location:	Forkston, Pennsylvania	Accident Number:	ERA21LA191
Date & Time:	April 22, 2021, 21:04 Local	Registration:	N4055N
Aircraft:	ROBINSON HELICOPTER R44	Aircraft Damage:	Destroyed
Defining Event:	VFR encounter with IMC	Injuries:	1 Fatal
Flight Conducted Under:	Part 91: General aviation - Personal		

Location:	Crescent Mills, California	Accident Number:	WPR18TA157
Date & Time:	May 18, 2018, 08:09 Local	Registration:	N9163X
Aircraft:	Cessna 182D	Aircraft Damage:	Substantial
Defining Event:	Fuel related	Injuries:	2 None
Flight Conducted Under:	Part 91: General aviation - Personal		

Location:	Flat Rock, North Carolina	Accident Number:	ERA09FA514
Date & Time:	September 10, 2009, 14:15 Local	Registration:	N888WD
Aircraft:	Beech A36	Aircraft Damage:	Substantial
Defining Event:	Controlled flight into terr/obj (CFIT)	Injuries:	1 Fatal
Flight Conducted Under:	Part 91: General aviation - Personal		

Appendix D - Experiment I Questionnaire

You just viewed and evaluated a weather scenario. Your task is to predict the weather conditions at the open circled locations (locations where weather conditions are unknown) based upon the closed circled locations (locations where weather conditions are known). Please indicate your flight condition estimate for the open circled locations by marking one of the four boxes below.

LIFR	IFR	MVFR	VFR

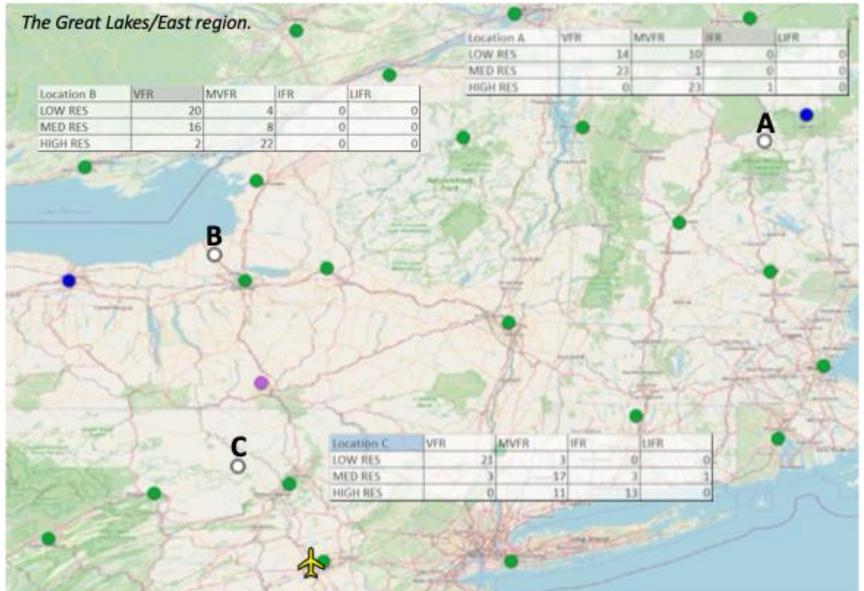
Mark your willingness / risk tolerance to operate in Marginal VFR conditions?

1-2	3-4	5	6-7	8-9
Not at all	Willing to accept	Willing to accept	Willing to accept	Willing to accept
	slight risk	moderate risk	high risk	all risk

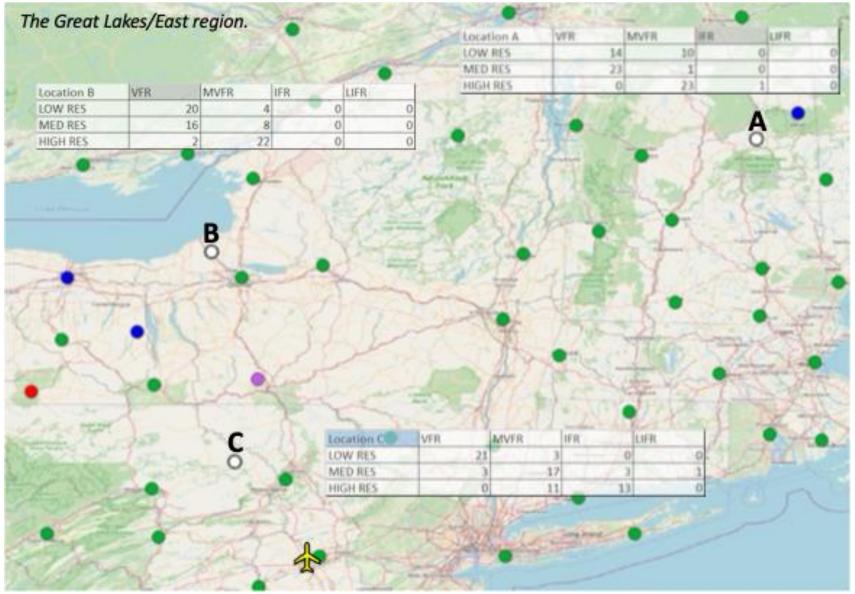
For your flight condition estimate above, state your confidence in that estimate by marking one of the qualitative descriptors below.

1-2	3-4	5	6-7	8-9
Not at all	Slight confident	Somewhat	Fairly confident	Completely
confident		confident	-	confident

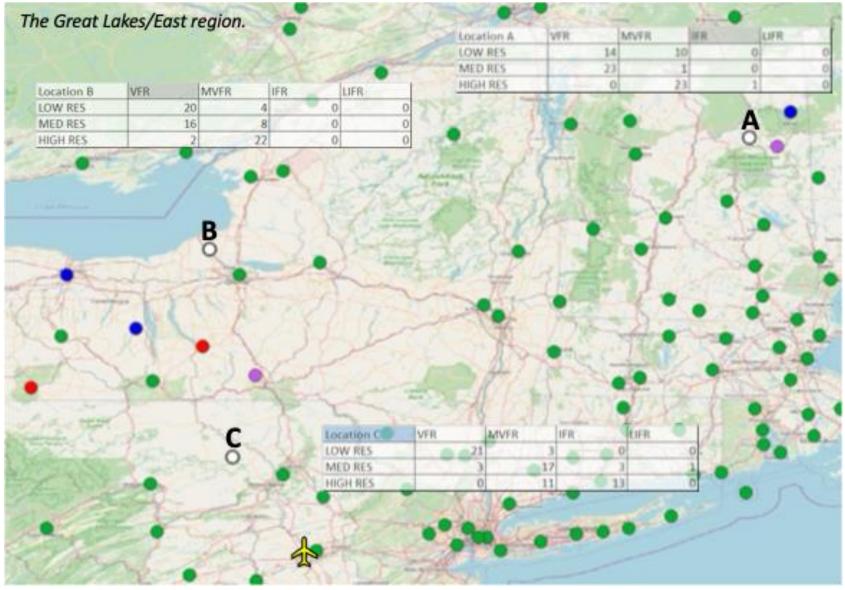
If you had intended to fly this scenario as a VFR pilot, and your destination was an **open-circled** airport, based on all the information available to you - would you have made a 'Go' or 'No-Go' decision?

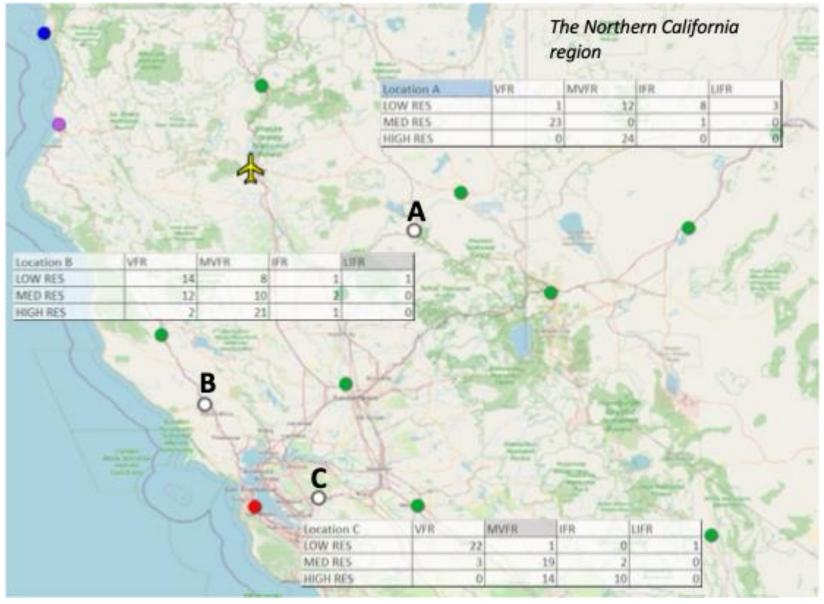

Go	No-Go					

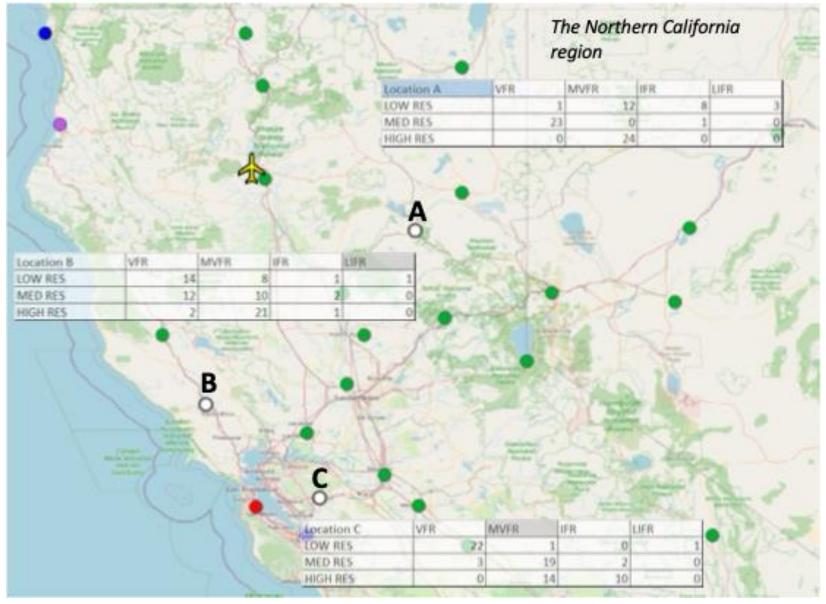
If you had intended to fly this scenario as a VFR pilot, and your destination was a **closed-circled** airport, based on all the information available to you - would you have made a 'Go' or 'No-Go' decision?

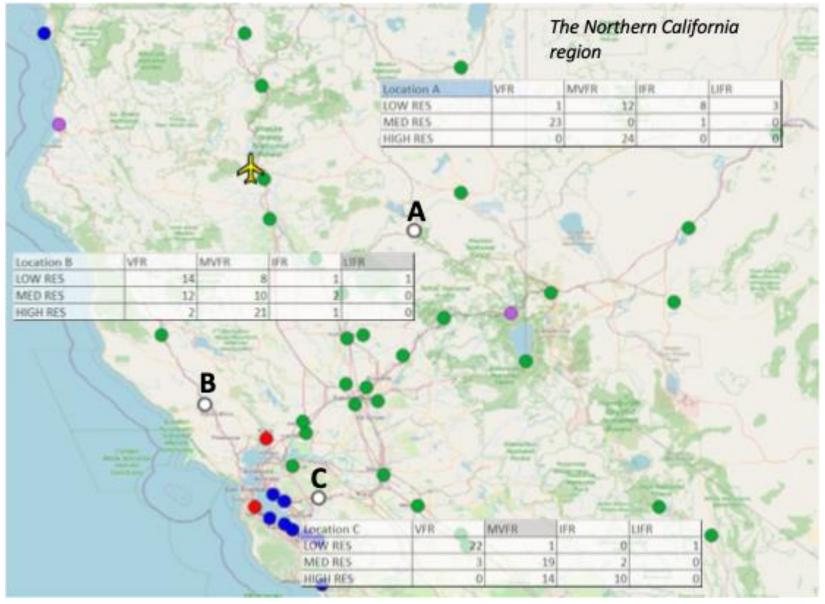

Go	No-Go

WJHTC Survey Questions









The Cumberland Plateau/Southern Appalachians region. MVFR. LIFR VFR IFR Location A LOW RES 12 12 MED RES 22 0 HIGH RES 11 13 Ô A Location B VFR MVFR IFR UFR 19 LOW RES Δ MED RES 16 1 B HIGH RES 21 0 S VFR MVFR LIFR Location C SFR. LOW RES 21 0 MED RES 13 7 3 22 HIGH RES 2 0 0

The Cumberland Plateau/Southern Appalachians region. MVFR. LIFR VFR Location A LOW RES 12 12 O. MED RES 22 0 HIGH RES 13 11 Ô A VFR MVFR UFR Location B IFR LOW RES 19 MED RES 16 B HIGH RES 21 C LIFR VFR MVFR Location C **SFR** LOW RES 21 0 3 MED RES 13 3 7 22 HIGH RES 0 21 Ð

The Cumberland Plateau/Southern Appalachians region. MVFR. LIFR Location A VFR LOW RES 12 12 MED RES 22 0 HIGH RES 11 13 A Location B VFR MVFR **IFR** UFR LOW RES 19 MED RES 16 B HIGH RES 21 C LIFR Location C VFR MVFR. IFR LOW RES 21 3 13 MED RES 7 HIGH RES 22

Counts of Pilot Select Flight Rule Category by Point/Scenario/Resolution

- The thick border represents the observed for the "distractors"
- The "Green" point location is the location of the incident and might be debatable whether those are IFR or LIFR.

GREAT LAKES		258					NCAL	3	69					C. PLAT	14	7		
A	VFR		MVFR	IFR	LIFR		A	VFR	MVFR		IFR	LIFR		A	VFR	MVFR	IFR	LIFR
LOW RES		14	1	D	0	0	LOW RES		1	12	8	1	3	LOW RES	1	2 12	2	0 0
MED RES		23		1	0	0	MED RES		23	0	1		D	MED RES	2	2 (D	1 1
HIGH RES		0	2	3	1	0	HIGH RES		0	24	C) (D	HIGH RES	1	1 13	3	0 0
В	VFR		MVFR	IFR	LIFR		В	VFR	MVFR		IFR	LIFR		В	VFR	MVFR	IFR	LIFR
LOW RES		20		4	0	0	LOW RES		14	8	1		1	LOW RES	1	9 4	4	1 0
MED RES		16		В	0	0	MED RES		12	10	2		D	MED RES		3 21	L	0 0
HIGH RES		2	2	2	0	0	HIGH RES		2	21	1	(D	HIGH RES	1	9 4	4	1 0
с	VFR		MVFR	IFR	LIFR		С	VFR	MVFR		IFR	LIFR		с	VFR	MVFR	IFR	LIFR
LOW RES		21	1	3	0	0	LOW RES		22	1	()	1	LOW RES	2	1 3	3	0 0
MED RES		3	1	7	3	1	MED RES		3	19	2	2 (D	MED RES		7 13	3	3 1
HIGH RES		0	1		13	0	HIGH RES		0	14	10)	0	HIGH RES		2 22	2	0 0

	OVERALL			
	VFR	MVFR	IFR	LIFR
LOW RES	144	57	10	5
MED RES	112	89	12	3
HIGH RES	36	154	26	0

Survey Takeaways

The survey results indicated a relatively low skill in survey participants being able to estimate the correct weather flight rules category conditions. Surprisingly, increasing levels of reporting station observability did not systematically improve accuracy, or influence confidence, in pilot estimations of flight conditions or confidence in their estimates. There were very few correct estimations of flight rule conditions at targeted locations. Few estimations of conditions at known airport reporting stations were correct; accuracy did not increase with increasing observability of other nearby airport reporting stations.

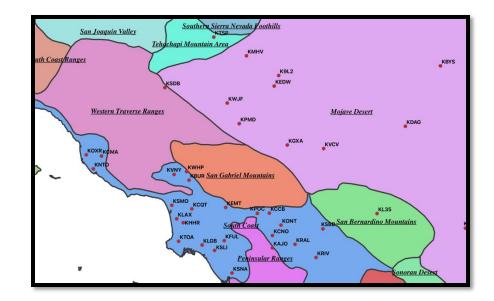
Despite these errors, pilot estimates of their confidence were rated "fairly confident" or "completely confident" (the highest rating) in the overwhelming majority of evaluations. There is more spread in confidence estimates in the medium- and high-observability conditions than the low-resolution condition, with notably higher numbers of "slightly confident" estimates in the medium- and high-observability conditions. The medium observability level had the highest number of completely confident selections. It is also important to note that confidence does not uniformly shift in either direction with presentation of more weather observations ("greater resolution"), even when the additional observations indicate increased variability in reported weather conditions.

Climate Zones Models: More Variation – More Uncertainty?

- Koppen-Geiger climate zones
- Major Land Resource Area
- Level IV Ecoregions
- Jepson Ecoregions
- Evapotranspiration (ETo) zones
- Plant Hardiness Zones
- Fenneman/Johnson physiographic divisions
- National Interagency Fire Center Dispatch Center zones
- National Predictive Service Area (PSA)

Central Valley & South Coast Regions

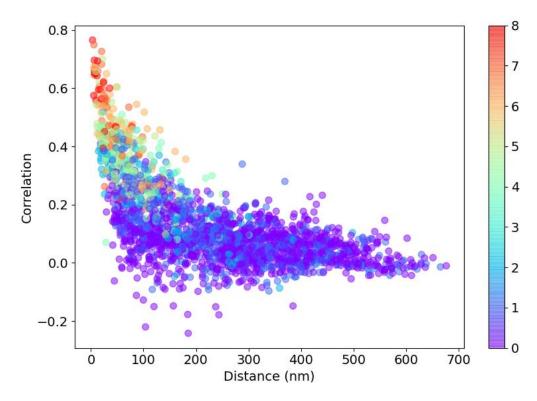
Developing a "Climate Zones Matching Index" (CZMI)



Scales and Attributes of Weather Information Representativeness for Pre-flight and En-route Advisories for Pilots in Low Altitude Operations

Climate Classification Systems

- 1. Predictive Service Area (PSA) boundaries
- 2. Jepson Ecoregions
- 3. Evapotranspiration zones in California
- 4. Köppen-Geiger climate classification
- 5. Fenneman-Johnson Physiographic Subsections
- 6. Major Land Resource Areas
- 7. Level IV Ecoregions of California
- 8. Plant Hardiness Zones



ASOS/AWOS Systems in Southern California within Jepson Ecoregions

Scales and Attributes of Weather Information Representativeness for Pre-flight and En-route Advisories for Pilots in Low Altitude Operations

- Spatial correlation
 - Classic decrease vs.
 station separation
 distance
- Climate Zone Matching Index
 - Number of matching climate zones for each station pair (ranges from 0 to 8)

Immediate Next Steps (1 slide)

- Making Sense of Previous Results
 - Questions regarding order of presentation
 - Why are risk perceptions not shifting in expected ways?
 - Are impacts of terrain and zone uncertainty recognized?
- Apply CZMI to Additional Regions

 Cumberland, Appalachia, Great Lakes, Upper Plains
- Next Set of Studies for Pilot Decision Making and Impact of Information Availability
 - Extensions of Project 36
 - More research generating more questions than answers?

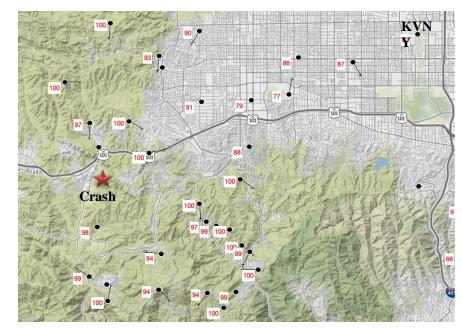
Next Steps Objectives

- What is the design of the next study (studies)?
 - Determine the nature of shifts in pilot decisions
 - Distinction of showing pilots different levels of visibility sequentially vs random
 - Display changes in decisions bias
 - How decision-making shifts with more visual availability
 - Presentation of climate zone matching index and if and how it can be utilized by pilots

Next Steps Objectives

- Where are the three scenarios of interest?
 - Locations:
 - Cumberland Plateau
 - Northern Great Lakes
 - Western Great Plains
 - Interface Visibility:
 - Low Observability
 - Medium Observability
 - High Observability

Conclusions (1 slide)



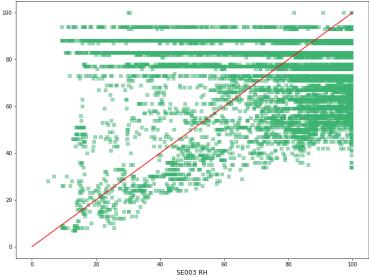
Case 4: DCA20MA059 Calabasas, CA

- Relative humidity representativeness (KVNY vs. crash region)
- Ceilings at KVNY and terrain in the incident region.

Incident METAR indicating a ceiling of 1300 feet at KVNY (crash at 1745 UTC):

METAR KVNY 261751Z 00000KT 2 1/2SM HZ OVC013 12/09 A3016 RMK AO2 SLP212 T01220089 10122 20111 51010= I

Relative humidity near the incident time from MesoWest



Case 4: DCA20MA059 Calabasas, CA

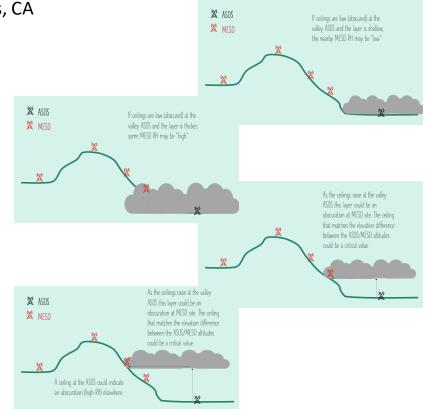
- How does relative humidity compare between ASOS stations and mesonet stations in the incident region.
 - Mesonet stations typically will only report relative humidity in terms of a variable of interest related to ceilings and visibility

CVNY RH

- ASOS reports a temperature and dew point that can be converted to a relative humidity
- Relative humidity compares poorly between KVNY and SE003.
 - SE003, Saddle Peak, is a Southern California Edison weather station in the Santa Monica Mountains

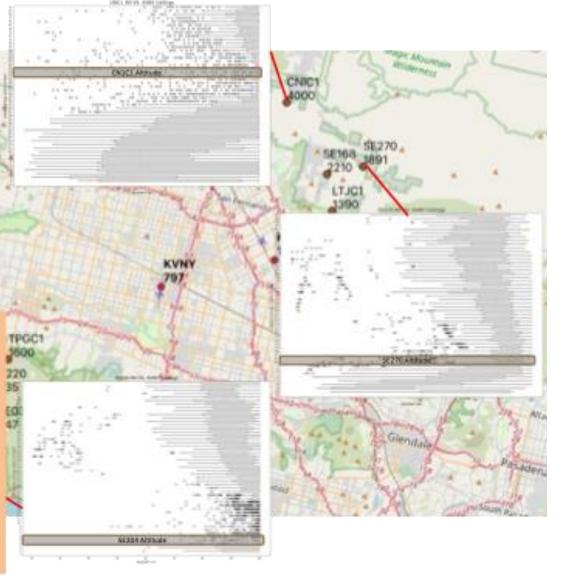
Scatterplot comparison of relative humidity at SE003 and KVNY for a period of over 2 years

SE003 RH MESONET VS. RH ASOS


Case 4: DCA20MA059 Calabasas, CA

Conceptual Model

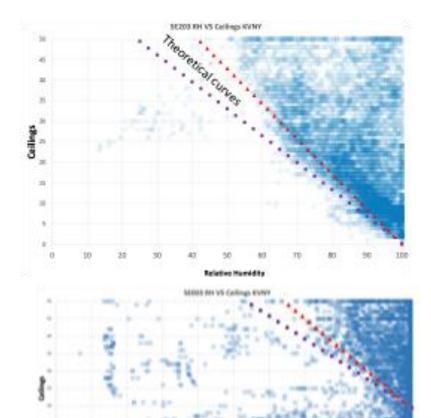
ASOS/AWOS are typically in the lowlying areas or valleys


When there are low clouds or obscurations at low altitude mesonet stations at higher altitude be at lower relative humidity.

As cloud layers rise with respect to the valley, mesonet stations at higher altitude may get into "weather" and the relative humidity increases while decreasing at the valley floor.

Note: at some distance away KVNY the ceilings/clouds at KNVY won't be representative of conditions at a mesonet site. This distance may be very different than that for other meteorological variables.

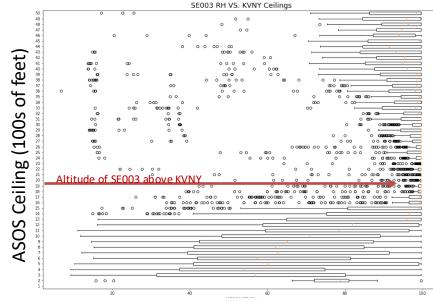
Case 4: DCA20MA059 Calabasas, CA

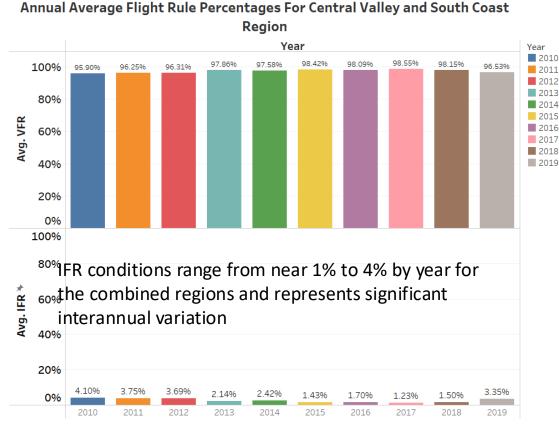

Conceptual Model

ASOS/AWOS are typically in the lowlying areas or valleys

When there are low clouds or obscurations at low altitude mesonet stations at higher altitude be at lower relative humidity.

As cloud layers rise with respect to the valley, mesonet stations at higher altitude may get into "weather" and the relative humidity increases while decreasing at the valley floor.

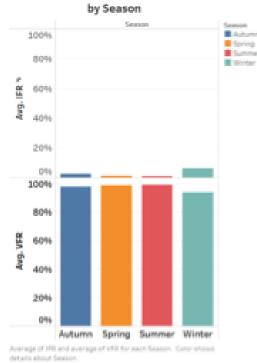

As ceilings raise to the mesonet station altitude the relative humidity range is constrained and very high.

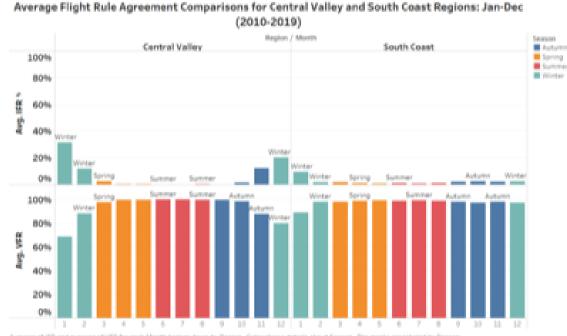

Case 4: DCA20MA059 Calabasas, CA

- As ceilings rise to near the mesonet station altitude the RH in very small and values are near saturation indicative of the mesonet station being in or near the cloud obscuration.
- The combination of RH information from the mesonet site and the ceiling from the nearby ASOS provide a more confident indication of obscuration at the mesonet site than just using relative humidity alone.

Mesonet RH

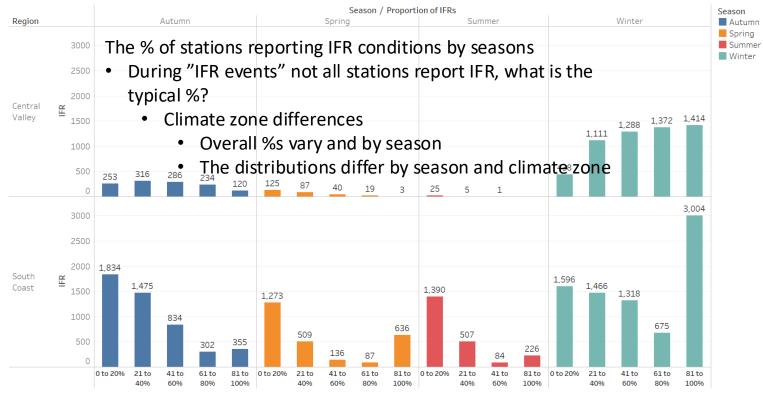
PEGASis Ripe for Machine Learning Application: Central Valley/South Coast Interannual Variation


Average of VFR and average of IFR for each Year. Color shows details about Year. For pane Average of IFR: The marks are labeled by average of IFR. For pane Average of VFR: The marks are labeled by average of VFR.


Although the FAA has sponsored this project, it neither endorses nor rejects the findings of this research. The presentation of this information is in the interest of invoking technical community comment on the results and the conclusions of the research.

Seasonal/Monthly Variation

Flight Rule Agreements Comparions



Average of IFR and average of IFR for each Month broken down by Region. Color shows details about Season. The marks are labeled by Season

Although the FAA has sponsored this project, it neither endorses nor rejects the findings of this research. The presentation of this information is in the interest of invoking technical community comment on the results and the conclusions of the research.

IFR Percentage Comparisons in Each Percentage Category for Central Valley and South Coast Regions

Sum of IFR for each Proportion of IFRs broken down by Season vs. Region. Color shows details about Season. The marks are labeled by sum of IFR. The data is filtered on Time Series Month and Year. The Time Series Month filter keeps 12 of 12 members. The Year filter keeps 10 of 10 members.